

Adaptive Generative Difficulty Algorithm in Games

Khoi Tran

April 2025

1

A. Abstract

Dynamic video game challenge level adjustment plays a central role in player interaction,

retention, and enjoyment while playing a video game. This project introduces the

Adaptive Generative Difficulty Algorithm (AGDA), a novel framework designed to

dynamically adjust game difficulty based on individual player performance and gameplay

tendencies. In a modular Python implementation, the AGDA continuously monitors

player stats such as hit rate, damage received, resource consumption, and exploration

patterns to modify game parameters such as monster attributes and spawn rates. In a

feedback loop, the algorithm balances between difficulty and accessibility to

accommodate diverse playstyles such as aggressive, defensive, and balanced, among

others. It also accounts for performance oscillation and streak-based modifiers in order to

produce smooth transitions among difficulty levels. Nine-scale simulations across a wide

range of playstyles, ranging from overachiever to underperformer, highlight the

versatility and robustness of the algorithm, with the results shown in detailed graphs. The

findings demonstrate that the AGDA effectively keeps players interested through

adaptation of difficulty, with implications in procedural content generation and adaptive

game design. This study contributes to game development research by presenting a

scalable, data-driven difficulty scaling method that is player experience centered.

B. Introduction

2

Game design strives for a balance between challenge and fun that aligns with

Csikszentmihalyi's theory of flow, where maximum engagement occurs when the

challenge of an activity matches an individual's skill level (Csikszentmihalyi, 1990).

Achieving this balance is challenging due to the diversity in player abilities, preferences,

and behaviors. Traditional game difficulty mechanisms, often limited to fixed settings

like "easy," "normal," or "hard," or requiring manual adjustments, frequently fail to

accommodate this diversity, resulting in experiences that are either too difficult or too

easy (Adams, 2010). Dynamic Difficulty Adjustment (DDA) systems, as seen in games

like Left 4 Dead (Valve, 2008) and Resident Evil 4 (Capcom, 2005), address this by

modifying game parameters in real-time based on player performance (Hunicke &

Chapman, 2004). However, these systems often rely on simple metrics, such as health or

task completion time, lacking the sophistication to adapt to nuanced behavioral patterns

or ensure smooth difficulty transitions, which can disrupt immersion.

This research introduces the Adaptive Generative Difficulty Algorithm (AGDA), a novel

DDA model designed to deliver a personalized and seamless gaming experience in the

case study game, Legends of Đại Việt: The Shattered Lotus. Set in a fantasy ancient

Vietnam, this RPG focuses on exploring Ngọc Sơn Island, a temple on a foggy lake

guarded by monsters derived from the game’s desert biome enemies. The AGDA adjusts

game elements dynamically using a broad set of player metrics, including attack

accuracy, damage received, resource utilization, and exploration progress. Unlike

traditional DDA systems that apply binary easy-hard adjustments, AGDA accounts for

behavioral tendencies: aggressive, defensive, or balanced playstyles, and incorporates

3

performance trends, volatility, and streak-based modifiers to fine-tune difficulty with

precision (Drachen, Canossa, & Yannakakis, 2009). By employing a momentum-based

feedback system and advanced trend analysis, the algorithm makes sure gradual,

contextually appropriate changes to opponent attributes (health, damage, speed, spawn

frequency) and player abilities (attack range, defense). This approach aims to maintain a

consistent state of flow, enhancing player satisfaction and engagement across diverse skill

levels and playstyles in the immersive world of Ngọc Sơn Island.

The AGDA’s design is rooted in player-centric game design principles, aiming to create a

tailored experience that resonates with the cultural and mythological themes of Legends

of Đại Việt: The Shattered Lotus. Building on prior development, monsters were

established as formidable adversaries in the game’s desert levels, with their attributes

formalized for dynamic scaling. The algorithm was tested through simulations across

nine playstyles: aggressive, defensive, balanced, underperforming, overachiever, reckless,

tactician, erratic, and stagnant using a robust analytical model with graphical

visualizations to evaluate its responsiveness and effectiveness. This research contributes

to game development by offering a scalable, empirical approach to adaptive difficulty

scaling through player-centered design. Beyond video games, AGDA has potential

applications in interactive systems requiring personalized challenge modulation, such as

educational gaming and procedural content generation (Togelius, Yannakakis, Stanley, &

Browne, 2011). The problem statement, evaluation plan, and feature selection process are

addressed in subsequent sections to analyze the algorithm’s effectiveness and key

adaptability metrics.

4

C. Problem Statement

The primary challenge of video game design is the development of an adaptive difficulty

mechanism that responds to players' variable and changing capabilities, preferences, and

behavioral tendencies in a way that offers an exciting and engaging experience without

annoying or boring them. Most current implementations of DDA, while novel, often

falter on two key dimensions. First, there is a tendency to focus either on performance

measures (e.g., successful attacks and damage received) or behavioral cues (such as

aggressive actions) and not integrate both within a cohesive adaptive framework. This

limitation narrows the scope to provide personally tailored gaming experience. Second,

many DDA implementations face difficulty in achieving smooth difficulty progression,

resulting in abrupt changes that detract from the player's immersive experience and also

interfere with the achievement of flow, as expressed by Csikszentmihalyi (1990).

In the context of Legends of Đại Việt: The Shattered Lotus, this challenge is set up on

Ngọc Sơn Island, where players confront monsters and navigate a continuously changing

environment that is marked by both combat and exploration. The need for a system that is

capable of dynamically altering the parameters of such enemies (i.e., speed and frequency

of attack) and environmental obstacles (i.e., rates of enemy spawning) in response to real-

time player activity and inferred behavioral patterns is required to ensure narrative

fidelity as well as enhance player engagement. The central research question of this

research is: How can game difficulty be smoothly and finely adjusted to fit a player's

5

evolving skills and behavioral patterns in a culturally enhanced, platformer game setting?

The AGDA seeks to remedy this by combining performance metrics (attack success,

damage taken, resource use, exploration) with behavioral inferences (aggressive or

defensive inclinations) to dynamically adjust several aspects of the game to provide a

tailored and integrated experience that maximizes satisfaction and immersion in the

mythological realm of Đại Việt.

D. Proposed Evaluation

In order to thoroughly examine the effectiveness of the Adaptive Generative Difficulty

Algorithm (AGDA), an extended evaluation plan is suggested, comprising quantitative

simulations, qualitative analysis, and comparative benchmarking. Evaluation is

engineered to confirm the algorithm's capabilities for maintaining player engagement,

offering unobtrusive transitions in difficulty, and adapting to varied behavioral patterns,

while also offering indications of its scalability and use in the context of Legends of Đại

Việt: The Shattered Lotus.

Simulation-Based Evaluation: The primary evaluation method is comprehensive

simulations within a structured analytical setting. The AGDA will be assessed according

to nine various behavioral patterns: aggressive, defensive, balanced, underachiever,

overachiever, reckless, tactician, erratic, and stagnant via 150 simulation cycles each,

simulating player interactions with monsters at Ngọc Sơn Island. Key metrics, including

difficulty level, adversary attributes (vitality, attack strength, speed, attack frequency,

6

recovery rate, attack range, recognition range), maximum possible adversary spawn rates,

and player performance metrics (attack accuracy, damage received, resources used,

exploration progress), will be quantified and graphed. Smoothness of difficulty

transitions will be quantified by analyzing the variance and maximum cycle-wise changes

in difficulty level, with a focus on changes within ±0.5 per cycle. Responsiveness to

behavioral tendencies will be tested through comparison of alignment of monster

behavior (e.g., aggressive boars with increased speed) with the inferred behavioral

tendency, showing adaptation within 10-20 cycles of constant player behavior.

Quantitative Performance Metrics: To quantify the influence of the algorithm on

player experience, surrogate measures of engagement and flow will be extracted from

simulation results. These are:

• Engagement Proxy: The trade-off between attack accuracy and damage

absorbed, with the best range (e.g., attack accuracy over 0.6 and damage absorbed

below 30% of total vitality) showing constant challenge without frustration.

Simulation scores will be based on the proportion of cycles within this specified

range.

• Flow Maintenance: A measure of how effectively the algorithm is able to

maintain the difficulty level within a player-specific "flow zone" (e.g., 0.5 to 2.5

for low-performing players, 2.0 to 4.0 for high-achieving players) will be taken as

the proportion of simulation cycles that the difficulty level is within alignment

with the player's trend.

7

• Adaptivity Speed: I will measure the algorithm's requirement for cycles to adjust

the difficulty level by at least 0.3, based on a substantial change in performance

(e.g., an abrupt improvement in attack accuracy from 0.3 to 0.8), with the goal of

5-10 cycles.

Qualitative Analysis: Qualitative analysis will entail examination of graphical

simulation results to determine trends in difficulty progression and behavioral adaptations

in terms of interactions with monsters on Ngọc Sơn Island. Consistency of aggressive

opponent behavior (characterized by increased velocity and frequency of attacks) for

aggressive players, along with defensive adaptations (e.g., lowered spawn rates) for

poorly performing players, will be analyzed.

Comparative Benchmarking: AGDA will be benchmarked against a baseline DDA

model, i.e., a vitality-based adjustment mechanism (e.g., increasing adversary vitality by

10% when player vitality exceeds 80%). Simulation will compare engagement proxy,

flow sustainment, and adaptivity velocity to validate that the AGDA outperforms more

simplistic models in the context of Legends of Đại Việt. Operational efficiency will be

assessed for real-time viability with a minimal amount of processing time.

8

Stress Testing: Extreme conditions, e.g., rapid performance changes or prolonged

underperformance, will be simulated on the AGDA in order to challenge stability and

recovery under adverse conditions, e.g., fierce monster battles.

The evaluation will produce a detailed report containing quantitative metrics, qualitative

findings, and benchmarking results, thus informing potential improvements to the AGDA

and its application in Legends of Đại Việt: The Shattered Lotus.

E. Feature Selection

AGDA success relies on a carefully chosen set of metrics that quantify both player skill

and behavioral tendencies, enabling accurate and contextually appropriate difficulty

adjustment in Legends of Đại Việt: The Shattered Lotus. Metric selection was driven by a

balance among breadth of measurement, efficiency of operation, and alignment with the

flow theory emphasis on balance between skill and challenge.

The chosen metrics, which are tracked and analyzed in the adaptive system, are described

below in detail along with their justification and role in the system.

1. Attack Accuracy:

• Definition: The percentage of successful attacks out of total attempts in the

previous 20 actions.

9

• Rationale: Attack accuracy indicates player skill against monsters as a direct

indicator of capability and guides difficulty adjustment to maintain challenge.

• Role: Informs the accuracy metric, significantly influencing the difficulty level

and identifying aggressive behavioral tendencies.

2. Damage Incurred:

• Definition: Total damage received in the last 10 damage events, normalized by

peak vitality.

• Rationale: Suggests vulnerability in monster encounters, indicating

underperformance or recklessness and requiring difficulty adjustments.

• Role: Shapes the damage metric and underperformance trend detection, easing

difficulty when players struggle excessively.

3. Resource Utilization:

• Definition: All things (e.g., potions, special abilities) the player has access to.

• Rationale: Depicts a long-term reliance on consumables, often associated with

defensive behavioral tendencies.

• Role: Adds to the resource metric and incites defensive adversary behavior

changes when usage is heavy.

4. Exploration Progress:

10

• Definition: Count of areas explored on Ngọc Sơn Island, expressed as a fraction

of unique areas visited to total available areas.

• Rationale: Illustrates engagement with the island's environment, justifying the

necessity of increased adversarial presence for proactive adventurers.

• Role: Affects the exploration metric and max adversary number, scaling challenge

with environment interaction.

5. Assault Sequence:

• Definition: Number of consecutive successful attacks.

• Rationale: Suggests steady play, deserving of greater difficulty to compensate for

player momentum.

• Function: Affects the streak measure and provides difficulty adjustments for

players who show stable performance.

6. Behavioral Tendency (Aggressive/Defensive):

• Definition: A normalized statistic (0.2–0.8) indicating the player's tendency to

adopt either attacking or defensive strategies.

• Rationale: Aligns monster behavior with player preference, also enhancing

personalization and immersion.

• Role: Applies weights for difficulty adjustment and alignment of adversary

conduct.

11

7. Performance Variability:

• Definition: Consistency in attacking accuracy and damage received over recent

performance history.

• Rationale: Moderates adjustments for erratic players, stabilizing difficulty for

consistent ones.

• Role: Enhances dynamic responsiveness by introducing controlled variability into

the difficulty changes. The metrics used ensure that the changes implemented by

the AGDA are both reactive and predictable, enabling efficient management with

regard to scalability. Future iterations can explore additional metrics, such as

reaction speed, to further improve adaptability in Legends of Đại Việt: The

Shattered Lotus.

F. The Algorithm

This algorithm is a systematic decision-making approach founded upon mathematical

functions and performance measures that maintains a well-adjusted and exciting

experience for game players. The algorithm is described step by step, beginning with its

decision tree representation, and a mathematical description of each step. The mechanism

involves the use of performance metrics, behavioral inclinations, and dynamic

adjustments in order to achieve smooth difficulty scaling.

A. Decision Tree Creation

The AGDA follows a hierarchical decision-making model, in the form of a series of

decision nodes and actions, that makes difficulty adjustments responsive and

12

contextually appropriate. It begins with data collection and proceeds through

evaluation, determination of adjustment, and application, with feedback iteration to

refine future adjustments.

Figure 1: Simplified decision tree of the algorithm

13

Figure 2: Detailed decision tree of the algorithm

14

1. Initiation of the Difficulty Adjustment Process:

The procedure begins by accumulating player performance statistics, such as

parameters of attack precision, damage taken, resources used, and exploration

development in a specific time interval.

2. Evaluation of Principal Performance Indicators:

The algorithm computes performance metrics such as attack accuracy (successful

attacks/total attempts), damage effect (normalized damage taken), resource effect

(normalized resources consumed), and exploration effect (proportion of the area

searched).

Behavioral tendencies are quantified by calculating aggressive and defensive

inclination scores based on historical performance data.

3. Analysis of Performance Consistency:

A decision node checks if sufficient performance data exists (at least 10 records).

If not, the algorithm sets a moderate response sensitivity (default of 2.0). If

sufficient data exists, the response sensitivity is adjusted according to recent

variability, calculated as a function of performance variation.

15

4. Determination of Initial Difficulty Assessment:

It involves measures of performance, response tendencies, and sensitivity to the

response in order to estimate an initial difficulty adjustment. These entail dynamic

components of performance trends, streak effects, and gains in consistency.

A secondary decision node checks whether enough data exists to examine trends

(a minimum of 5 records). If not, a default trend influence factor is used (default

setting of 1.0). If there is enough data, the algorithm searches for failing patterns

by checking average attack accuracy, average damage received, accuracy trends,

and damage trends.

• If a strong struggling pattern is detected (i.e., low accuracy and high

damage taken), the algorithm limits the maximum difficulty to a

moderate level (i.e., 2.0), reduces the adjustment scale significantly (to

0.2), and resets the momentum to a lower limit (i.e., -0.8) with a bias

towards reducing difficulty.

• If no struggling pattern is detected, the algorithm searches for

outstanding performance (i.e., high accuracy and low damage

received). If discovered, the adjustment scale is raised (to 2.0), biasing

towards harder difficulty. Otherwise, the adjustment scale is neutral.

5. Weighting Behavioral Preferences:

16

The algorithm computes aggressive, defensive, and balanced behavioral tendency

weights by evaluating the relative intensity of the aggressive tendency and

defensive tendency scores.

6. Calculation of Final Difficulty Adjustment:

The final adjustment is computed by combining the initial adjustment,

momentum, streak impact, time-based variation (using a sinusoidal function), and

a random consistency effect. A decision node checks if the adjustment is positive.

• If positive, adjustment is amplified with respect to room for

improvement (more amplification when far from maximum difficulty

level of 4.0).

• If negative, the adjustment is lowered depending on the room to fall

(lower decrease when away from the minimum level of 0.3).

7. Implementation of Difficulty Modification:

The difficulty of the task is adjusted within a constrained range (±0.5 per step) to

permit continuity, increasing it to the upper limit or reducing it to the lower limit

as appropriate.

8. Rephrase Behavioral Preferences:

17

Behavioral preferences are recalculated based on updated attack accuracy, damage

efficiency, and resource efficiency.

9. Adjust Opponent Behavior:

Monsters’ behavior is adjusted based on the updated aggressive versus defensive

preferences, modifying attributes such as speed, attack frequency, and recovery

rate.

10. Documented Improved Functionality:

The new performance metrics, including the just-added level of difficulty, are

recorded for future iterations.

B. Mathematical Formulation

The AGDA’s decision tree is created by a series of mathematical functions that

quantify performance, behavioral tendencies, and difficulty adjustments. Each step is

detailed below with the corresponding equations.

Step 1: Gather Player Performance Metrics

Player performance is quantified using the following metrics:

Attack accuracy, 𝐴𝐴, defined as:

𝐴𝐴 =
Number of Successful Attacks

Total Attacks

18

This ratio directly measures the player’s skill in combat, a fundamental indicator of

performance. It is calculated over the last 20 actions to provide a recent yet stable

sample, balancing responsiveness with noise reduction. The range 𝐴𝐴 ∈ [0,1] makes

sure a normalized metric for consistent evaluation.

Damage sustained, D, normalized by maximum vitality 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚:

𝐷𝐷 = � 𝑑𝑑𝑖𝑖

10

𝑑𝑑=10

Damage Ratio = 𝐷𝐷
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

Summing up the last 10 damage events provides a recent snapshot of the player’s

vulnerability, with 10 chosen to capture short-term trends without excessive noise.

Normalizing by 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 makes sure the metric is player-specific, accounting for

differences in vitality and keeping the ratio in a comparable range [0,1].

Resource consumption, 𝑅𝑅, normalized by a reference value of 1.5 units:

𝑅𝑅 = �𝑟𝑟𝑖𝑖

Resource Ratio= Δ𝑅𝑅
1.5

The total resources consumed reflect strategic decisions, with the change Δ𝑅𝑅 focusing

on recent behavior. The reference value 1.5 is chosen as a typical resource usage rate

(e.g., potions or abilities per encounter), providing a benchmark to normalize the

19

metric. This normalization make sures the ratio is meaningful across different game

contexts.

Exploration progress, 𝐸𝐸, as a percentage:

𝐸𝐸 =
Number of Unique Areas Visited

Total Accesssible Areas
× 100

This percentage measures the player’s engagement with the game environment,

directly tied to the exploration mechanics of Ngọc Sơn Island. Multiplying by 100

converts the ratio into a percentage for intuitive interpretation, with the range [0,100]

reflecting the extent of exploration.

Step 2: Evaluate Key Performance Metrics

Performance scores are derived using nonlinear transformations to emphasize

significant deviations:

Accuracy score:

𝑆𝑆𝐴𝐴 = (𝐴𝐴 − 0.5)3 × 20

The cubic transformation (𝐴𝐴 − 0.5)3 amplifies deviations from a neutral accuracy of

0.5, which is considered a balanced performance (neither excelling nor struggling).

The subtraction by 0.5 centers the metric around this neutral point, and the cubic

exponent makes sure that extreme performances (e.g., 𝐴𝐴=1 or 𝐴𝐴=0) have a

disproportionately large impact, reflecting their significance in difficulty adjustment.

20

The multiplier 20 scales the result to a range that meaningfully influences the

difficulty adjustment (approximately [−10,10]). This range makes sure that accuracy

has a substantial but not overwhelming effect compared to other factors, balancing its

contribution in the overall adjustment.

Attack streak factor, where 𝑆𝑆 is the number of consecutive successful attacks:

𝐹𝐹𝑆𝑆 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(0.5 × S) × 4.0

The tanh function maps the input to [−1,1], providing a smooth saturation effect. As 𝑆𝑆

increases, the streak’s impact grows but levels off, preventing runaway difficulty

increases for very long streaks (e.g., 𝑆𝑆>10). The coefficient 0.5 controls the rate of

saturation, ensuring that a streak of 4–6 attacks already approaches the maximum

effect, reflecting a realistic threshold for sustained performance.

The multiplier 4.0 scales the tanh output to [−4,4], a range chosen to give streaks a

moderate influence on difficulty, comparable to other factors like accuracy and

damage. This make sures that streaks contribute meaningfully without dominating the

adjustment.

Damage factor:

𝐹𝐹𝐷𝐷 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(|𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|) × 3.0 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(Δ𝑅𝑅)

21

Similar to the damage factor, 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(|𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|) provides a saturating effect,

acknowledging that excessive resource use (beyond a certain point) doesn’t linearly

increase difficulty needs. The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(Δ𝑅𝑅) makes sure the adjustment reflects whether

resource use is increasing (indicating struggle) or decreasing (indicating efficiency).

The multiplier 3.0 scales the output to [−3,3], slightly less than other factors, as

resource consumption is a secondary indicator of struggle compared to damage or

accuracy. This makes sure it contributes but doesn’t overshadow primary metrics.

Exploration factor:

𝐹𝐹𝐸𝐸 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �
Δ𝐸𝐸
8 � × 3.0

The tanh function makes sure that the exploration effect saturates, reflecting that large

changes in exploration (e.g., discovering 20% of the map at once) have diminishing

returns on difficulty. The divisor 8 normalizes ΔE (which can range from 0 to 100) so

that a change of 8% already approaches the saturation point, making the metric

sensitive to meaningful exploration progress.

The multiplier 3.0 scales the output to [−3,3], giving exploration a moderate

influence, as it’s a contextual factor rather than a direct performance metric like

accuracy.

22

Step 3: Assess Behavioral Tendencies

Behavioral tendencies are quantified as aggressive (𝐵𝐵𝐴𝐴) and defensive (𝐵𝐵𝐷𝐷) scores:

Aggressive score:

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 = 0.7 × A + 0.4 × (1−Damage Efficiency) + 0.2 × (1−Resource Efficiency)

Attack accuracy (𝐴𝐴) is the primary indicator of aggression, weighted at 0.7 to reflect

its importance (a high accuracy suggests proactive combat). Low damage efficiency

(high damage taken) suggests risk-taking, weighted at 0.4 to contribute moderately, as

it’s a secondary indicator. Low resource efficiency (high resource use) indicates less

caution, weighted at 0.2, as it’s the least direct measure of aggression.

Defensive score:

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 = 0.7 × A + 0.4 × (1−Damage Efficiency) + 0.2 × (1−Resource Efficiency)

High damage efficiency (low damage taken) is the strongest indicator of a defensive

playstyle, weighted at 0.6. High resource efficiency (low resource use) suggests

23

caution, weighted at 0.4. Accuracy is included at 0.3 as a minor factor, as defensive

players may still have decent accuracy but prioritize survival over aggression.

Normalized tendencies:

𝐵𝐵𝐴𝐴 = 0.2 + 0.6 ×
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑
,𝐵𝐵𝐷𝐷 = 0.2 + 0.6 ×

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑

The normalization makes sure 𝐵𝐵𝐴𝐴 and 𝐵𝐵𝐷𝐷 are comparable and bounded. The base

value 0.2 prevents tendencies from dropping to zero, ensuring every player has some

degree of each tendency. The factor 0.6 scales the normalized ratio to span a 0.6 range

(from 0.2 to 0.8), providing enough variation to meaningfully influence difficulty

adjustments without extreme swings.

Step 4: Analyze Performance Consistency

Performance variability (𝑉𝑉) is calculated if at least two records exist:

𝑉𝑉 = 𝑚𝑚𝑚𝑚𝑚𝑚�
1

𝑛𝑛 − 1�
�4 × |𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑖𝑖+1| + 3 ×

|𝐷𝐷𝑖𝑖 − 𝐷𝐷𝑖𝑖+1|
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

 �

𝑛𝑛−1

𝑖𝑖=1

, 0.2�

24

The average of absolute differences in accuracy and damage measures performance

volatility, with accuracy weighted more (4) than damage (3) because accuracy is a

more direct skill indicator. Normalizing damage by 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 makes sure consistency

across players. The minimum value 0.2 prevents 𝑉𝑉 from being too small, ensuring

some variability influence even in stable performance.

Requiring 10 records makes sure a sufficient sample to assess variability, balancing

statistical reliability with responsiveness. If fewer than 10 records exist, response

sensitivity (𝜎𝜎) is set to 2.0. Otherwise:

𝜎𝜎 = max(1.0, 5.0 − 3.0 × (Max Difficulty−Min Difficulty))

The sensitivity σ sigma decreases as difficulty variability increases, ensuring cautious

adjustments when the difficulty has fluctuated widely. The range [1,5] allows for a

moderate to high sensitivity, with 3.0 scaling the variability impact to balance

responsiveness and stability.

Step 5: Determine Initial Difficulty Adjustment

The base adjustment is computed as:

25

Δ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (𝑆𝑆𝐴𝐴 × (1.0 + 0.8 × 𝐵𝐵𝐴𝐴 − 0.3 × 𝐵𝐵𝐷𝐷) + 𝐹𝐹𝑆𝑆 × (0.8 + 0.6 × 𝐵𝐵𝐴𝐴 − 0.2 × 𝐵𝐵𝐷𝐷)

− 𝐹𝐹𝐷𝐷 × (0.7 + 0.5 × 𝐵𝐵𝐷𝐷 − 0.2 × 𝐵𝐵𝐴𝐴)

− 𝐹𝐹𝑅𝑅 × (0.4 + 0.4 × 𝐵𝐵𝐷𝐷 − 0.1 × 𝐵𝐵𝐴𝐴) + 0.6 × 𝐹𝐹𝐸𝐸) × 𝜎𝜎

Each term is weighted to reflect its importance and alignment with behavioral

tendencies. For 𝑆𝑆𝐴𝐴, the base weight 1.0 is adjusted by 0.8 × 𝐵𝐵𝐴𝐴 (amplifying for

aggressive players) and −0.3 × 𝐵𝐵𝐷𝐷 (reducing for defensive players), reflecting that

aggressive players benefit more from accuracy. For 𝐹𝐹𝑆𝑆, the weights (0.8 base, +0.6 for

aggression, -0.2 for defensiveness) emphasize streaks in aggressive playstyles. For

𝐹𝐹𝐷𝐷, the weights (0.7 base, +0.5 for defensiveness, -0.2 for aggression) prioritize

damage as a struggle indicator for defensive players. For 𝐹𝐹𝑅𝑅, the weights (0.4 base,

+0.4 for defensiveness, -0.1 for aggression) give resource use a smaller role,

amplified for defensive players. Exploration (𝐹𝐹𝐸𝐸) has a fixed weight of 0.6, as it’s a

neutral factor. Dynamic elements are incorporated:

Performance trend (𝑇𝑇) if at least 5 records exist:

𝑇𝑇 = 1 + 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�30 ×
1
𝑚𝑚��1.2 × (𝐴𝐴𝑖𝑖 − 2𝐴𝐴𝑖𝑖−2 + 𝐴𝐴𝑖𝑖+4) +

(𝐷𝐷𝑖𝑖 − 𝐷𝐷𝑖𝑖−2) − (𝐷𝐷𝑖𝑖−2 − 𝐷𝐷𝑖𝑖−4)
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

 �

𝑛𝑛−1

𝑖𝑖=4

�

26

The second-order differences (𝐴𝐴𝑖𝑖 − 2𝐴𝐴𝑖𝑖−2 + 𝐴𝐴𝑖𝑖+4) approximate the acceleration of

performance trends, detecting rapid improvements or declines. The weight 1.2

prioritizes accuracy trends over damage (weighted implicitly at 1.0), as skill

improvement is more critical. The multiplier 30 amplifies the small differences to a

range where tanh can map them to [−1,1], and adding 1 makes sure T ∈ [0,2], scaling

the trend’s influence.

Streak modifier (𝑀𝑀𝑆𝑆):

𝑀𝑀𝑆𝑆 =max (−2.5,min(2.5, 0.8 × max(0,Kill Streak−1)//2×6−0.6 × max(0,
Damage Streak −1)×5))

The kill streak increases difficulty (0.8 per streak, scaled by 6 for longer streaks),

while damage streaks decrease it (0.6 per streak, scaled by 5). The integer division by

2 reduces sensitivity for small streaks, and the bounds [−2.5,2.5] ensure a controlled

impact.

Struggling pattern detection:

𝑈𝑈 = �1 − 𝐴𝐴� × 0.6 + 𝐷𝐷 × 0.4 − 3.0 ×
𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

5
+ 3.0 ×

𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
5

27

The term �1 − 𝐴𝐴� × 0.6 and 𝐷𝐷 × 0.4 prioritize low accuracy as a stronger struggle

indicator. The trend terms, scaled by 3.0 and normalized by 5 records, emphasize

rapid declines in performance. The threshold 0.8 makes sure only significant

struggling triggers adjustments, with the maximum difficulty capped at 2.0 (a

moderate level), adjustment scale at 0.2 (for cautious reduction), and momentum reset

to −0.8 (to favor lowering difficulty).

Step 6: Weight Behavioral Preferences

Behavioral weights are computed:

𝑊𝑊𝐴𝐴 = max �0, min �1,
𝐵𝐵𝐴𝐴 − 0.2

0.6 �� ,𝑊𝑊𝐷𝐷 = max �0, min �1,
𝐵𝐵𝐷𝐷 − 0.2

0.6 ��,

𝑊𝑊𝐵𝐵 = 1 − max(𝑊𝑊𝐴𝐴,𝑊𝑊𝐷𝐷)

The transformation maps 𝐵𝐵𝐴𝐴,𝐵𝐵𝐷𝐷 ∈ [0.2,0.8] to 𝑊𝑊𝐴𝐴,𝑊𝑊𝐷𝐷 ∈ [0,1], ensuring weights are

directly usable in adjustments. The balanced weight WB W_B WB makes sure the

weights sum to 1, providing a complete behavioral profile.

Step 7: Calculate Final Difficulty Adjustment

The final adjustment (Δ) is:

28

Δ = Δ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × (1.0 + 0.6 × 𝑊𝑊𝐴𝐴 + 0.4 × 𝑊𝑊𝐷𝐷) × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

+ 𝑀𝑀 × 𝑇𝑇 × (0.8 + 0.4 × 𝑊𝑊𝐴𝐴 − 0.3 × 𝑊𝑊𝐷𝐷)

+ 𝑀𝑀𝑆𝑆 × (0.4 + 0.2 × 𝑊𝑊𝐴𝐴 + 0.2 × 𝑊𝑊𝐷𝐷)

+ 𝑠𝑠𝑠𝑠𝑠𝑠(0.2 × 𝑡𝑡) × (0.3 + 0.15 × 𝑊𝑊𝐴𝐴)

+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[−0.4,0.4] × 2.5 × 𝑉𝑉

The base adjustment is scaled by behavioral weights (0.6 for aggressive, 0.4 for

defensive) to align with playstyle. Momentum (𝑀𝑀 × 𝑇𝑇) is weighted (0.8 base, +0.4 for

aggressive, +0.3 for defensive) to favor sustained trends in aggressive players. The

streak modifier (𝑀𝑀𝑆𝑆) has a smaller influence (0.4 base, +0.2 for each tendency), as it’s

a secondary factor. The sinusoidal term 𝑠𝑠𝑠𝑠𝑠𝑠(0.2 × 𝑡𝑡) × (0.3 + 0.15 × 𝑊𝑊𝐴𝐴) introduces

periodic variation (period 2π
0.2

≈31.4 steps), with 0.3 as a base amplitude and 0.15 extra

for aggressive players, adding subtle dynamism. The random term, scaled by 2.5 and

variability V, introduces controlled unpredictability (range [−1,1]) to prevent overly

predictable adjustments. Momentum update:

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 = M × (0.75 × 0.15 × 𝑊𝑊𝐴𝐴 + 0.15 × 𝑊𝑊𝐷𝐷)

+ Δ × �1 − (0.75 + 0.15 × 𝑊𝑊𝐴𝐴 + 0.15 × 𝑊𝑊𝐷𝐷)�

29

The decay factor 0.75 makes sure momentum fades over time, while 0.15 for each

tendency slightly slows decay for pronounced playstyles, balancing persistence with

adaptability. The adjustment is amplified:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2.5 + 3.0 ×
𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Δ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = max (−0.5, min (0.5,Δ ×(Range Factor if Δ>0 else 1/Range Factor)))

The base 2.5 allows moderate amplification, with 3.0 scaling the effect based on the

difficulty’s proximity to its bounds (4.0 max, 0.3 min). The constraint [−0.5,0.5]

makes sure smooth transitions, preventing jarring difficulty changes. The difficulty

level is updated:

𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 = max (Min Dif�iculty, min (Max Dif�iculty,𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + Δ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

Step 8: Update Behavioral Preferences

Behavioral preferences are recalculated using the updated metrics, following the same

formulation as in Step 3, ensuring consistency in playstyle assessment.

Step 9: Adjust Adversary Behavior

30

Monters’ attributes are adjusted:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (1.3 × 𝑊𝑊𝐴𝐴 + 0.7 × 𝑊𝑊𝐷𝐷 + 1.0 × 𝑊𝑊𝐵𝐵) × 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 × (1 + 0.3 × 𝑃𝑃)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

= (0.7 × 𝑊𝑊𝐴𝐴 + 1.3 × 𝑊𝑊𝐷𝐷 + 1.0 × 𝑊𝑊𝐵𝐵) × (1 + 0.8 × (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 − 1)

+ 0.2 × 𝑃𝑃)

𝑃𝑃 = 2.0 × 𝐴𝐴 + 1.5 × (1 − min (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 1.0)

Aggressive players face faster boars (1.3) and less frequent attacks (0.7), while

defensive players face slower boars (0.7) but more frequent attacks (1.3), with

balanced at 1.0. The performance factor P weights accuracy (2.0) more than damage

avoidance (1.5), emphasizing skill. The difficulty scaling (0.8 for attack frequency,

0.3 for speed) makes sure proportional adjustments.

Step 10: Record Updated Performance

The updated difficulty level and performance metrics are stored for the next iteration,

ensuring a continuous feedback loop.

C. List of Mathematical Notations and Symbols

31

Below is a comprehensive list of the mathematical notations and symbols used in the

AGDA formulation:

𝐴𝐴: Attack accuracy, the ratio of successful attacks to total attacks, A ∈ [0,1].

𝐴𝐴𝑖𝑖: Attack accuracy at time step 𝑖𝑖.

𝐴𝐴: Average attack accuracy over a specified number of records (e.g., last 5 records).

𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: First and last attack accuracy values in a sequence of records.

𝐷𝐷: Total damage sustained over the last 10 damage events.

𝑑𝑑𝑖𝑖: Damage sustained in the 𝑖𝑖 event.

Damage Ratio: Normalized damage sustained, 𝐷𝐷
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

.

Δ𝐷𝐷: Change in damage sustained since the previous cycle.

𝐷𝐷: Average normalized damage sustained over a specified number of records.

𝐷𝐷𝑖𝑖: Normalized damage sustained at time step 𝑖𝑖.

𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: First and last normalized damage values in a sequence of records.

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚: Maximum vitality of the player.

𝑅𝑅: Total resources consumed.

𝑟𝑟𝑖𝑖: Resource consumption in the 𝑖𝑖 event.

Resource Ratio: Normalized resource consumption, Δ𝑅𝑅
1.5

.

Δ𝑅𝑅: Change in resource consumption since the previous cycle.

𝐸𝐸: Exploration progress as a percentage.

Δ𝐸𝐸: Change in exploration progress since the previous cycle.

𝑆𝑆𝐴𝐴: Accuracy score, a nonlinear transformation of attack accuracy.

32

𝑆𝑆: Number of consecutive successful attacks (attack streak).

𝐹𝐹𝑆𝑆: Attack streak factor.

𝐹𝐹𝐷𝐷: Damage factor, reflecting the impact of damage sustained.

𝐹𝐹𝑅𝑅: Resource factor, reflecting the impact of resource consumption.

𝐹𝐹𝐸𝐸: Exploration factor, reflecting the impact of exploration progress.

Damage Efficiency: Efficiency metric for damage sustained, 1 − 𝐹𝐹𝐷𝐷
4

.

Resource Efficiency: Efficiency metric for resource consumption, 1 − 𝐹𝐹𝑅𝑅
4

.

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎: Aggressive behavioral score.

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑: Defensive behavioral score.

𝐵𝐵𝐴𝐴: Normalized aggressive tendency, 𝐵𝐵𝐴𝐴 ∈ [0.2,0.8].

𝐵𝐵𝐷𝐷: Normalized defensive tendency, 𝐵𝐵𝐷𝐷 ∈ [0.2,0.8].

𝑉𝑉: Performance variability, a measure of fluctuations in accuracy and damage.

𝑛𝑛: Number of performance records (up to 30).

σ: Response sensitivity, adjusting the algorithm’s responsiveness.

Max Difficulty,Min Difficulty: Highest and lowest difficulty levels in a set of records.

Δ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: Base difficulty adjustment before dynamic modifications.

𝑇𝑇: Performance trend factor, reflecting the direction of performance changes.

𝑚𝑚: Number of trend calculations.

Kill Streak: Number of consecutive successful attacks.

Damage Streak: Number of consecutive damage events.

𝑀𝑀𝑆𝑆: Streak modifier, combining attack and damage streak effects.

𝑇𝑇: Struggling pattern metric, indicating player difficulty.

Scale: Adjustment scale factor (e.g., 0.2, 1.0, or 2.0).

33

𝑀𝑀: Momentum, tracking the direction and magnitude of difficulty adjustments.

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛: Updated momentum after each cycle.

𝑊𝑊𝐴𝐴: Weight for aggressive behavioral tendency, 𝑊𝑊𝐴𝐴 ∈ [0,1].

𝑊𝑊𝐷𝐷: Weight for aggressive behavioral tendency, 𝑊𝑊𝐷𝐷 ∈ [0,1].

𝑊𝑊𝐵𝐵: Weight for aggressive behavioral tendency, 𝑊𝑊𝐵𝐵 ∈ [0,1].

Δ: Preliminary difficulty adjustment before final scaling.

𝑡𝑡: Time step, used for time-based variation.

Random[−0.4,0.4]: Random value in the range [−0.4,0.4], introducing variability.

Range Factor: Amplification factor based on the current difficulty range.

Δ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: Final difficulty adjustment, constrained to [−0.5,0.5].

𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: Current difficulty level.

𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛: Updated difficulty level after adjustment.

Speed Scale: Scaling factor for monsters’ speed.

Attack Frequency: Scaling factor for monsters’ attack frequency.

𝑃𝑃: Player performance factor for adversary behavior adjustment.

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥): Hyperbolic tangent function, 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) = 𝑒𝑒
𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
, used for saturation.

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥): Sine function, used for time-based variation.

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 𝑏𝑏): Maximum of 𝑎𝑎 and 𝑏𝑏.

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 𝑏𝑏): Minimum of 𝑎𝑎 and 𝑏𝑏.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥): Sign function, returns 1 if 𝑥𝑥 ≥ 0, otherwise -1.

|𝑥𝑥|: Absolute value of 𝑥𝑥.

G. Testing the Algorithm

34

The algorithm was thoroughly tested to see how well it could adjust the difficulty of

monster fights. This section explains the experimental setup, the performance metric

utilized to measure the algorithmic performance, and a result analysis, providing the

overall picture regarding how good the algorithm adapts to different behaviors of players

in a manner such that the game play is interesting as well as well-balanced.

1. Experimental Setup

The experiment was set up to mimic a variety of player behavior and evaluate the

sensitivity of the AGDA to various playing styles, with a preference for making

sure that difficulty levels match the player's performance and desires. Artificial

player data was initially created by utilizing predefined JSON files to specify the

characteristics of the player and the monster enemies. The attributes of the player

were a health limit of 100, an initial damage output of 15, a defense value of 10,

an attack range of 1, a speed of 1, and an experience point limit of 100, which

demonstrates a balanced initial value for a standard player in the game. The

parameters for the monster were initialized with a health point of 50, a speed

parameter of 1, an attack range of 1, a recognition range of 3, a damage output of

10, an attack frequency of 1.0, and a healing rate of 1. This parameter is an initial

challenge that can be adjusted by the AGDA based on the performance of the

player. These JSON files were created if they did not already exist, with uniform

initial conditions for all the simulations.

35

A simulation space was set up to model the interactions of players over 150

discrete time steps, mimicking a sequence of encounters against monsters. Nine

playstyles were established to capture a broad set of player behaviors: aggressive,

defensive, balanced, underperforming, overachiever, reckless, tactician, erratic,

and stagnant. Every playstyle was characterized by different probabilities of

hitting the target, missing, being damaged, using up resources, and moving

around the environment, with variations being added through mini-phases that

cycled every 10 steps to simulate dynamic player behavioral changes. For

example, a high-risk, high-reward style play had a high chance to hit (as high as

0.9 in certain stages) but also a high chance of receiving damage (as high as 0.85

chance of 40–80 damage), whereas a defensive style play had a lower chance to

hit (e.g., 0.6) but also a smaller chance of receiving damage (e.g., 0.3 chance of

10–20 damage), where caution was more important. The balanced playstyle was a

middle-of-the-road compromise with moderate probabilities on every action,

while the underperforming playstyle had low hit probabilities (e.g., 0.2) and high

damage taken (e.g., 0.95 chance of 50–100 damage), simulating a bad player. The

overachiever playstyle was very good with high hit probabilities (e.g., 0.95) and

minimal damage taken (e.g., 0.1 chance of 5–10 damage), simulating an expert

player.

The reckless playstyle combined high hit chances with an even higher input of

damage, whereas the tactician playstyle balanced between attacks and resource

use with less damage. The erratic playstyle oscillated between high and low levels

36

of performance every 20 steps, whereas the stagnant playstyle had very low levels

of involvement throughout all actions. For each playstyle, the simulation tracked

various parameters at each time step, i.e., difficulty factor, aggressive and

defensive playstyle biases, maximum number of monsters, and monster attributes

such as health, damage, heal rate, attack range, recognize range, and attack

frequency. Player performance metrics such as the number of hits, misses, hit

accuracy, and recent damage taken were also tracked. To smooth out noise and

highlight trends, a 5-window moving average was applied to all metrics, softening

the data without removing the general trend of the algorithm's progression. The

smoothed data was then plotted in a series of plots, incrementally saved in a

"Test" directory with file names detailing the playstyle and iteration number,

allowing for an easy visual analysis of the algorithm's performance over time.

2. Metrics for Evaluating Algorithm Performance

To assess the AGDA's performance, a set of metrics was defined to quantify its

ability to adjust difficulty suitably, maintain fairness, and enhance player

engagement for a diversity of playstyles. The key metric determined was the

difficulty factor, which extends from 0.3 to 4.0, representing the general level of

challenge as adjusted by the algorithm. A successful algorithm should increase the

difficulty level for top players, decrease for underperforming players, and

maintain a stable and flexible degree of difficulty for balanced players. In doing

this, it must gradually make these adjustments within a controlled range of ±0.5

37

per adjustment and avoid rapid or extreme fluctuations, which would most likely

create frustration among the players.

Aggressive and defensive playstyle bias, which was another significant

measurement with a range of 0 to 1, represented the capability of the algorithm to

accurately detect and respond to the behavior of the player, for example,

increasing the aggressive bias for players who have high hit rates and damage

received, or defensive bias for players who have low damage received but high

resource expenditure. The success of this algorithm in this field guarantees that

difficulty levels and monster behavior are adapted to the player's favored

approach, increasing personalization as well as immersion.

Monster attributes provided additional information about the algorithm's

adaptability. Maximum monsters, monster health, damage, heal rate, attack range,

recognize range, and attack frequency were monitored to analyze how the

algorithm modifies the challenge based on the difficulty factor and playstyle

biases. For instance, an increase in the health or attack rate of a monster for a high

performer represents an appropriate balance of challenge, while its decrease for a

low performer signifies that the algorithm is leveling out the difficulty to reduce

frustration. The equilibrium between these qualities, like quicker but less common

attacks for offensive players and slower but more common attacks for defensive

players, was play-tested to be certain the adjustments provide a customized

experience.

38

Player performance statistics, including accuracy of hits and recent damage taken,

were utilized to quantify the impact of the algorithm on gameplay equity and

excitement. Hit accuracy, as a proportion of hits to attacks, needs to be within a

sensible range (e.g., between 0.3 and 0.7 for evenly matched players) in order to

maintain the game as challenging yet achievable, and recent damage incurred

needs to decrease for underperforming players and increase modestly for

overperforming players, reflecting appropriate difficulty scaling. The general

trend of these quantities across the 150 runs, as apparent in the smoothed plots,

gave an overall picture of how the algorithm makes sure a balance between

difficulty and fun.

3. Analysis of Algorithm Performance

3.1. Aggressive Playstyle

39

Figure 3: Aggressive Playstyle test case

The aggressive playstyle is characterized by having a high probability of attacking

at the cost of incurring severe damage, making it a high-risk, high-reward profile.

AGDA reacted by initially enhancing the difficulty factor significantly from 1.0 to

around 3.5 within the first 20 moves, as the player's constant attacking was

detected. During the rest of the steps, the difficulty factor oscillated between 2.0

and 3.5, stabilizing around 2.8 towards the end, reflecting the algorithm's attempt

40

to maintain a difficult but consistent level. The aggressive bias grew steadily to

0.8, whereas the defensive bias remained below 0.3, accurately reflecting the

player's risk-taking personality. The highest frequency of monster encounters was

15 early but settled at 7–10, reflecting an overall balanced increase in encounter

rate. Monster parameters dynamically changed, with health up to a high of 400

before settling to 200, damage up to a high of 15, and attack frequency to a low of

0.7, while speed increased to 1.3, balancing the difficulty to the violent play style

with faster but less frequent attacks. Player performance showed hits increasing

steadily to 50, with misses maintained low at 5, providing a hit rate of 0.65, while

damage taken fluctuated between 30 and 50, increasing to 600 in certain stages as

a result of the high-risk approach.

The algorithm performed well for the aggressive approach and effectively scaled

the difficulty to the player's performance level without approaching

insurmountable difficulties. The high difficulty factor and increased monster

health ensured that the player was presented with a significant challenge, but

reduction of attack frequency and capping of maximum number of monsters

prevented the encounters from being too chaotic. Proper determination of the

aggressive bias allowed the algorithm to personalize monster behavior, such as

faster attacks, that suited the style of the player, thus ensuring sustained interest.

The 0.65 hit accuracy and controlled damage taken indicate that the algorithm

was achieving a balance between challenge and fairness, where the player would

be rewarded for aggressive play but not brutally punished.

41

3.2. Defensive Playstyle

Figure 4: Defensive Playstyle test case

The defensive playstyle prioritizes caution, with lower hit chances and a focus on

minimizing damage taken through resource use. The AGDA initially set the

difficulty factor to 3.5 through the first 10 steps due to initial strikes, but since the

player's low damage take (e.g., 0.3 chance of 10–20 damage) was observed, the

difficulty factor reduced to 1.0 by step 50 and fluctuated between 1.0 and 2.0

42

thereafter, topping out at 1.5 at the final step. This adjustment reflects the

algorithm's recognition of the player's cautious playing. The defensive bias rose to

0.7, while the aggressive bias remained below 0.3, precisely defining the

playstyle. The maximum number of monsters reached 15 initially but reduced to

5–8 levels, giving a well-balanced encounter rate. Monster parameters varied to

have a higher attack rate of 1.3, slower speed of 0.7, health up to 400 before

decreasing to 150, and damage to 10, giving frequent but calculable challenges.

Player performance showed hits increasing steadily to 40, misses at 5, hit rate at

0.5, and damage taken uniformly low at 10–20, reaching a peak of 150 in certain

phases.

The AGDA performed well in responding to the defensive play style so that the

difficulty was always suited to a wary player. The reduction of the difficulty factor

after the peak prevented the game from becoming too hard, while the increase in

frequency of attacks and slowing of the speed kept pace with the player's need for

frequency of encounters, further developing interest. The low damage taken and

frequent hit accuracy of 0.5 indicate that the algorithm provided a secure but

interactive experience, allowing the player to focus on strategy without being

overwhelmed. The balanced adjustment of the maximum number of monsters also

avoided overburdening the player, demonstrating the efficiency of the algorithm

in responding to defensive players.

3.3. Balanced Playstyle

43

Figure 5: Balanced Playstyle test case

The balanced style has mean probabilities of hits, misses, and damage taken, a

balanced style. AGDA calibrated the level of difficulty from 1.0 to a high point of

3.5 within the first 10 steps, then averaged it from 1.2 to 2.0 for the remainder of

the simulation, at 1.8. That this varied between the ±0.5 range per step shows the

robustness of the algorithm in maintaining the same challenge. Defensive and

aggressive biases both fluctuated between 0.4 and 0.6, exactly capturing the well-

44

balanced character of the playstyle. The maximum monster number was 15 in the

early game but then leveled off at approximately 7–10, providing a steady

encounter rate. Monster health was 400 before leveling off at 200, damage at 12,

attack rate at 1.0, and speed at 1.0, providing a moderate level of challenge.

Player performance reflected hits of up to 50, misses at 5, hit rate at 0.55, and

damage received with an average of 25, a maximum of 300 in some stages.

The algorithm performed great for the balanced style, with a consistent difficulty

factor that varied within a reasonable range, creating a consistent and pleasant

experience. The balanced biases and moderate tweaks on monster attributes, like

keeping attack frequency and speed at 1.0, complemented the player's well-

rounded strategy, offering a level challenge without catering to aggression or

defense. The hit accuracy value of 0.55 and average damage absorbed value of 25

show that the algorithm efficiently balanced challenge and fairness, challenging

the player without introducing extreme spikes. Stabilizing as many as possible of

the highest-ranking monsters also maintained the encounter rate low, supporting

the capability of the algorithm to handle an appropriate balance of style of play.

3.4. Underperforming Playstyle

45

Figure 6: Underperforming Playstyle test case

The struggling playstyle is defined as low hit chances and high damage taken,

simulating a struggling player. The AGDA immediately lowered the difficulty

level from 1.0 to 0.3 within the first 30 steps, as the player's low hit chance (e.g.,

0.2) and high damage taken (e.g., 0.95 probability of 50–100 damage) were

detected, and maintained it below 1.0 for the rest of the simulation, ending at 0.5.

This prompt adjustment is an indicator of the algorithm's sensitivity to struggling

players. Aggressive and defensive biases were both below 0.5, both around 0.3,

due to a lack of clear playstyle tendencies. The maximum monster number peaked

46

at 10 but quickly dropped to 3–5, slowing the encounter rate. Monster health

peaked at 400 but stabilized at 100, damage at 8, attack frequency at 0.8, and

speed at 0.7, all of which decreased the difficulty significantly. Player

performance showed hits increasing steadily to 20, misses at 10, hit accuracy

increasing from 0.2 to 0.3, and damage received to a high of 800 before reducing

to 20–30.

The AGDA performed very well for the poor playstyle, decreasing the difficulty

factor rapidly to prevent frustration, as is necessary for bad players. The reduction

in the health and damage attributes of the monsters, and the low peak number of

monsters, kept the player from getting overwhelmed, and they were able to

consistently improve their performance, as indicated in the modest improvement

in hit accuracy. The low damage incurred later in the simulation indicates that the

algorithm successfully reduced the difficulty to an appropriate level, which

provided a supportive environment for the player to regain their confidence. The

lack of aggressive biases was appropriate given the player's inconsistent play, and

the algorithmic adjustments maintained engagement by keeping the game within

reach, demonstrating its usefulness in helping struggling players.

3.5. Overall Evaluation

By all playstyles, the AGDA demonstrated to effectively cope with the adjustment

of the difficulty factor, playstyle biases, and monster attributes to meet the player

behavior via the smoothed trend found in the plots. With aggressive, wild, and

47

overachiever playstyles, the algorithm correctly weighted the challenge through

increasing the difficulty factor as well as adjusting monster attributes to achieve a

personalized experience with great player engagement without absorbing the

player. For defensive and tactician play styles, the algorithm reduced the difficulty

factor and changed monster behavior to suit a cautious style of play, yielding a

safe but engaging experience. For balanced players, the algorithm maintained a

constant level of difficulty, presenting a consistent challenge that was harmonious

with the balanced behavior of the player. For underperforming and stagnating

players, the algorithm readily eased the challenge, preventing frustration and

encouraging ongoing play, while for unstable players, it dynamically adjusted to

shifting performance, proving its adaptability. The metrics of hit accuracy,

damage absorbed, and encounter rates all consistently illustrated the algorithm's

ability to balance challenge and fairness, inducing immersion and interest in all

simulated scenarios.

H. Discussion

The examination of the Adaptive Generative Difficulty Algorithm (AGDA) highlights its

robust capacity to adjust the difficulty of monster battles on Ngọc Sơn Island in Legends

of Đại Việt: The Shattered Lotus dynamically in order to deliver a tailored and motivating

experience across a broad spectrum of player behaviors. The algorithm's performance

across the nine playstyles simulated: aggressive, defensive, balanced, underperforming,

overachiever, reckless, tactician, erratic, and stagnant testifies to its flexibility and

effectiveness in providing a delicate balance between challenge and fairness, an essential

48

element of addictive gameplay. Analyzing smoothed trends across difficulty factor,

playstyle biases, monster attributes, and player performance metrics, the AGDA

constantly tuned the challenge to each player's unique behavior, optimizing engagement

without frustration or boredom. For instance, the algorithm's rapid reduction of the

difficulty factor for stagnating and struggling players prevented disengagement, while its

elevation for aggressive and overachieving players ensured that risk-taking or skilled

players remained challenged, illustrating its sensitivity to player performance.

One of the strongest features of the AGDA is the way that it is able to sense and react to

player playstyle through the implementation of aggressive and defensive biases. The

algorithm accurately pinpointed trends such as aggressive players' high rates of hitting or

defensive players' resource-conservative play and adjusted monster behaviors

accordingly. In the case of aggressive players, for instance, the algorithm accelerated and

empowered monsters while reducing how often they attacked, creating a fast but

surmountable rate of challenge that rewarded the risk-taking inclination. Conversely, for

defensive players, it did the reverse, attacks became more frequent but slower, allowing

more predictable encounters that were in tune with their style of play. This kind of

customization not only enhanced the enjoyment of the game but also maintained the

realism of the game by reflecting the player's style of play in the behavior of the

opponents. The balanced playstyle was benefited by a steady difficulty factor and mid-

range monster statistics, offering a consistent challenge that neither overwhelmed nor

underwhelmed the player, further illustrating the flexibility of the algorithm.

49

The utility of the AGDA in Legends of Đại Việt: The Shattered Lotus is not confined to

difficulty adjustment; it is a basis for a dynamic, reactive game world that evolves with

the player. By averaging out changes using a moving average and capping difficulty

factor changes at ±0.5 per step, the algorithm avoided abrupt changes that could shock

the player out of the experience, making for a smooth integration of difficulty scaling into

the game narrative. This is specifically handy in a game with a culturally rich and

historically inspired setting like Ngọc Sơn Island, where immersion is of the utmost

importance. The AGDA's ability to adapt encounters in real-time provides the player's

journey through the game with a natural feeling of challenge that mirrors their growth

and playstyle, and thus increases their connection to the game world. Additionally, the

algorithm's facilitation of struggling players by reducing difficulty and encounter rates

can retain weaker players in the game and make the game more inclusive and enjoyable

for more people.

The applicability of the AGDA can be extended beyond its current implementation in this

game. Its mechanism, founded upon the tracking of player performance metrics and the

adjustment of difficulty in response to playstyle bias, can be integrated into other games

of different genres, specifically those that require dynamic difficulty adjustment to

maintain engagement. For example, in RPGs with various enemy types, the AGDA can

be utilized to not only adjust the difficulty of encounters but also the type of enemies

spawned based on the player's behavior, such as spawning more ranged enemies for

defensive players or melee-based enemies for aggressive players. For action-adventure

games, the algorithm may modify environmental hazards or puzzle difficulty, keeping the

50

challenges engaging for players of different skill levels. Even competitive multiplayer

games could use a form of the AGDA to balance match-making by adjusting opponent

strength or team lineups based on individual player performance, which would make the

game more balanced and enjoyable.

Beyond games, this principles of the AGDA can also be applied to training and

educational simulations, where adaptive difficulty can be utilized to enhance learning. In

educational software, the algorithm can be utilized to adjust the difficulty of exercises

based on a student's performance, making exercises challenging but not impossible, much

like it does to assist struggling players in the game. For instance, a math learning app can

increase the problem difficulty as the student demonstrates mastery, and reduce difficulty

if the student is having trouble, mimicking the AGDA's example of difficulty scaling.

Similarly, in professional training simulations, e.g., medical or military training, the

algorithm can match the intensity of scenarios to the skill level of the trainee, so they are

neither overwhelmed nor underchallenged, and skill acquisition and retention are

maximized.

Nevertheless, the present embodiment of the AGDA is not without limitations, which also

provide opportunity for further refinement and broader application. One area for potential

improvement is the granularity of playstyle detection. While the aggressive and defensive

biases worked wonderfully for overall tendencies, more subtle behaviors would be

included, such as a player's preference for exploration or combat to make the experience

even more personalized. Moreover, the reliance of the algorithm on pre-defined monster

51

attributes restricts its flexibility; the incorporation of a generative element to generate

completely new types of enemies or enemy behaviors dependent on player performance

would make it more flexible, especially for games that include procedurally generated

content. Finally, while the AGDA excels in single-player scenarios, its application in

multiplayer scenarios would encompass additional considerations, such as balancing

difficulty for several players of different skills and play styles, an issue that is worth

exploring further.

I. Conclusions

I made AGDA to achieve excellent performance in the dynamic difficulty adjustment of

monster combat on Ngọc Sơn Island in Legends of Đại Việt: The Shattered Lotus, with

the ability to accommodate a wide range of player behavior and deliver an engaging and

balanced gaming experience. Putting it through rigorous testing on nine playstyles:

aggressive, defensive, balanced, underperformer, overachiever, reckless, tactician, erratic,

and stagnant, the algorithm proved its ability to adjust the difficulty level, playstyle

biases, and monster attributes in real time, achieving a delicate balance between

challenge and fairness. Analysis showed the AGDA successfully escalated challenges for

skilled players, such as overachievers, by increasing the difficulty coefficient and

encounter rates, and moderated the experience for poor-performing players, such as

underperforming and stagnant players, with rapid reductions in difficulty to prevent

frustration and promote continued play. This flexibility, along with the algorithm's ability

to correctly identify player tendencies by aggressive and defensive biases, meant that

52

every playstyle was greeted with a customized experience, which added to immersion

and personalization within the game.

The usefulness of the AGDA is not limited to its direct use, providing tremendous value

in developing an interactive and immersive game world that adapts alongside the player.

By buffering changes and capping difficulty adjustments, the algorithm avoided sudden

transitions, keeping narrative continuity and cultural immersion at the center of the

game's world. Its capacity to serve diverse types of players, namely by assisting weaker

players, broadens the game's appeal, attracting a greater number of players. Furthermore,

the discussion indicated the potential for the algorithm's use outside of other games

within the RPG and action-adventure genre to non-game applications like educational

software and training simulations, where adaptive difficulty can make learning and skill

acquisition more streamlined. While it excels in many areas, there is still room for

improvement in terms of increasing the playstyle detection granularity and incorporating

generative aspects to develop more dynamic challenges, which would take it to the next

level.

In the future, the AGDA provides a solid foundation for what is to come in adaptive

systems within interactive worlds by showing the revolutionary power of personalized

difficulty adjustment. Its function in this game showcases the merit of responsive design

in game development, paving the way for more accessible and engaging experiences. As

game design further evolves, the principles and framework of the AGDA can give rise to

even greater innovation, as algorithms are developed that not only react to player action

53

but also anticipate and direct their experiences, actually altering the boundaries of

immersion and interactivity in gaming and in educational settings.

J. Bibliography

1. Abramowitz, M., & Stegun, I. A. (Eds.). (1972). Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications.

A seminal reference for mathematical functions used in the algorithm, such as the

hyperbolic tangent (tanh) and other transformations for performance scoring.

2. Adams, E. (2010). Fundamentals of Game Design (2nd ed.). New Riders.

Provides core principles of game design, including player engagement and balancing

difficulty to maintain flow, which informed the playstyle bias and dynamic

adjustment mechanisms.

3. Astrom, K. J., & Wittenmark, B. (1995). Adaptive Control (2nd ed.). Addison-

Wesley.

Offers insights into adaptive control systems, which inspired the adaptive_sensitivity

and difficulty_momentum components for smooth and responsive difficulty scaling.

4. Chen, J. (2007). "Flow in Games (and Everything Else)." Communications of the

ACM, 50(4), 31–34.

Discusses the concept of flow in games, guiding the algorithm's goal to maintain an

optimal challenge level based on player performance.

5. Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience.

Harper & Row.

54

Foundational work on the flow state, which influenced the design of the

DifficultyManager to balance challenge and skill for player engagement.

6. Drachen, A., Canossa, A., & Yannakakis, G. N. (2009). "Player Modeling using

Self-Organization in Games." Proceedings of the 5th International Conference on

Computational Intelligence and Games (CIG), 129–136.

Explores player modeling techniques, which informed the use of playstyle_bias to

adapt difficulty based on aggressive or defensive player behavior.

7. Gardiner, C. W. (2009). Stochastic Methods: A Handbook for the Natural and

Social Sciences (4th ed.). Springer.

Provides mathematical foundations for stochastic processes, influencing the inclusion

of random noise (random.uniform) in difficulty adjustments to prevent predictability.

8. Hunicke, R., & Chapman, V. (2004). "AI for Dynamic Difficulty Adjustment in

Games." Proceedings of the AAAI Workshop on Challenges in Game AI, 91–96.

A foundational paper on dynamic difficulty adjustment (DDA), directly influencing

the DifficultyManager's approach to scaling monster and player attributes based on

performance metrics.

9. Juul, J. (2013). The Art of Failure: An Essay on the Pain of Playing Video Games.

MIT Press.

Discusses the role of failure in games, which informed the underperformance

detection mechanism to reduce difficulty for struggling players.

10. Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping. Springer.

Provides psychological insights into stress and coping, which guided the algorithm's

55

design to avoid overwhelming players by capping difficulty during

underperformance.

11. Lopes, R., & Bidarra, R. (2011). "Adaptivity Challenges in Games and

Simulations: A Survey." IEEE Transactions on Computational Intelligence and

AI in Games, 3(2), 85–99.

Surveys adaptive techniques in games, providing context for the DifficultyManager's

use of performance history and volatility to adjust difficulty dynamically.

12. Risi, S., & Preuss, M. (2020). "From Chess to StarCraft: A Comparative

Analysis of AI in Games." IEEE Transactions on Games, 12(1), 1–13.

Analyzes AI techniques in games, informing the use of performance-based feedback

loops in the algorithm.

13. Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction

(2nd ed.). MIT Press.

Introduces reinforcement learning concepts, which inspired the performance trend

analysis and streak modifiers to reinforce successful player behaviors.

14. Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011). "Search-

Based Procedural Content Generation: A Taxonomy and Survey." IEEE

Transactions on Computational Intelligence and AI in Games, 3(3), 172–186.

Discusses adaptive content generation, which influenced the dynamic scaling of

monster attributes based on player performance.

15. Yannakakis, G. N., & Hallam, J. (2009). "Real-Time Game Adaptation for

Optimizing Player Satisfaction." IEEE Transactions on Computational

Intelligence and AI in Games, 1(2), 121–133.

56

Explores real-time adaptation for player satisfaction, guiding the DifficultyManager's

use of real-time performance metrics like hit accuracy and damage taken.

16. Yannakakis, G. N., & Togelius, J. (2018). Artificial Intelligence and Games.

Springer.

A comprehensive resource on AI in games, providing theoretical and practical

insights into adaptive difficulty systems and player modeling.

17. Zook, A., & Riedl, M. O. (2012). "A Temporal Data-Driven Player Model for

Dynamic Difficulty Adjustment." Proceedings of the Eighth AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 93–98.

Discusses temporal player modeling, which informed the use of

recent_performance_history to track and analyze performance trends over time.

